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Abstract. The band structures of symmetrical Fibonacci sequences (SFS) composed of positive and neg-
ative refractive index materials are studied with a transfer matrix method. A new type of omnidirectional
zero-n̄ gaps is found in the SFS. In contrast to the Bragg gaps, such an omnidirectional zero-n̄ gap is
insensitive to the incident angles and polarization, and is invariant upon the change of the ratio of the
thicknesses of two media. It is found that omnidirectional zero-n̄ gap exists in all the SFS, and it is rather
stable and independence of the structure sequence.

PACS. 41.20.Jb Electromagnetic wave propagation; radiowave propagation – 78.20.Ci Optical constants
– 42.70.Qs Photonic bandgap materials

1 Introduction

Since the pioneer work of Yablonovitch [1] and John [2],
photonic crystals (PCs) have been attracting a lot of at-
tention. Photonic crystals are periodically structured di-
electric media possessing photonic band gaps (PBG). The
existence of band gaps prohibits the wave propagation in
such media for certain frequency range. Hence a wide va-
riety of applications have been suggested in optoelectron-
ics and optical communications. Recent investigations of
the physical properties of various groups of these deter-
ministic media, namely, substitutional (Fibonacci, Thue-
Morse, Rudin-Shapiro, and double-period) sequences have
revealed that such structures exhibit certain distinctive
features compared to traditional (that is, periodic and
random) media. These features have become an object of
great interest for scientists. Fibonacci lattice is the well-
known one-dimensional (1D) quasiperiodic structure [3,4],
its electronic and vibrational properties has been well-
studied since the discovery of the quasi-crystalline phase
in 1984 [5–7]. Light through a structure in Fibonacci se-
quence had also been studied in past decade [8,9], and
recently the resonant states at the band edge of a pho-
tonic structure in Fibonacci sequence are studied experi-
mentally [10].

Recently, the so-called negative refractive index mate-
rials have received renewed attention due to their novel
properties such as negative refraction index, antiparallel
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group, and phase velocities [11–17]. Negative index mate-
rials (NIMs) which were first predicted by Veselago [11] in
1968 possess simultaneously negative permeability ε and
permittivity µ. The existence of such materials with a neg-
ative refractive index was demonstrated experimentally in
recent years [12,18,19] and negative index materials have
become a new research topic. It has been demonstrated
that the periodic stacking of alternating layers of positive
and negative index material leads to a zero-n̄ gap where
the average refractive index for the stacking is close to
zero. The zero-n̄ gap is insensitive to the incident angle
comparing with the ordinary Bragg gap [13,15,16].

In this paper, we study the transmission properties of
symmetrical Fibonacci sequence composed of both posi-
tive and negative refractive index materials. In comparison
with [9], this paper extended the previous work in [9] to
general incident angles, which is one of the merits that
should be emphasized.

This paper is organized as follows: the transfer matrix
method for the calculation of photonic spectra and trans-
mission coefficients is briefly introduced in Section 2; the
transmission spectra for symmetrical Fibonacci sequence
are calculated and discussed in Section 3, Section 4 is our
conclusion.

2 Theoretical model and numerical method

A Fibonacci quasiperiodic structure is based on the
Fibonacci generation scheme: Sj+1 = {Sj−1Sj} for j ≥ 1,
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Fig. 1. Schematic representation of the SFS(3) multilayer.

with S0 = {B} and S1 = {A}, the first few sequences
are S2 = {AB}, S3 = {ABA}, S4 = {ABAAB} and so on.
Now, let us consider a multilayer in which two types of lay-
ers A and B are arranged in a Fibonacci sequence (FS).
Then, we can construct a kind of symmetric Fibonacci
sequences (SFS). For the jth generation of the SFS, this
symmetric sequence can be expressed as Sj+1 = {Gj+1 ,
Hj+1}, where Gj and Hj are FS; they obey the recur-
sive relation, which has the form, Gj+1 = {Gj−1Gj},
Hj+1 = {HjHj−1}, Sj+1 = {Gj−1Gj HjHj−1}. As an
example, the third sequence of S3 is S3 = {ABAABA}.
The corresponding structure of S3 is shown in Figure 1.
As can be seen from this figure, the sequence has a mirror
symmetry.

In this paper, the symmetrical Fibonacci se-
quences (SFS) is composed of two building blocks A and B,
A is the usual positive index material and B is negative
index materials.

Let a wave be incident from a vacuum at an angle θ
onto a SFS containing NIMs and positive index materi-
als (PIMs), as show in Figure 1. For the transverse elec-
tric (TE) wave, the electric field E is assumed in the
x-direction (the dielectric layers are in the x − y plane),
and the z-direction is normal to the interface of each layer.
In general, the electric and magnetic fields at any two po-
sitions z and z + ∆z in the same layer can be related via
a transfer matrix [15,16]:

M(∆z, ω) =⎛
⎝

cos[kz∆z] i µ√
εµ−sin2 θ

sin(kz∆z)

i

√
εµ−sin2 θ

µ sin(kz∆z) cos[kz∆z]

⎞
⎠ , (1)

where kz = ω/cδ
√

εµ − sin2 θ, the sign δ = ±1. We select
δ = 1 for a PIMs and δ = −1 for a NIMs, c is the light
speed in vacuum. Then the transmission coefficient t(ω)
can be obtained from the transfer matrix method [16],

t (ω) =
2 cos θ

(m11 + m22) cos θ + i (m12 cos2 θ − m21)
. (2)

Here mij(ω)(i, j = 1, 2) are the matrix element of
XN (ω) =

∏N
j=1 Mj(dj , ω) which represents the total

transfer matrix connecting the fields at the incident end
and the exit end. The treatment for a TM wave is similar
to that for a TE wave.

Fig. 2. Transmittance with different incident angle.

3 Results and discussion

In the following numerical investigation, we suppose a
NIMs is isotropic and dispersive, with effective permeabil-
ity ε and permittivity µ given by [13,20]

ε(ω) = ε − α

ω2
(3)

µ(ω) = µ − β

ω2
. (4)

Here ω is the frequency measured in GHz, ε and µ rep-
resent permittivity and permeability of an unperturbed
transmission line, α and β are circuit parameters and can
be modulated with great freedom. We choose ε = 1.21,
µ = 1.0, and α = β = 100. Suppose that the refractive in-
dex and thickness of a PIMs are n1 and d1, the refractive
index and thickness of a NIMs are n(ω) = −√

ε(ω)µ(ω)
and d2, and the number of unit cells is N . Here, we use
n1 = 2, d1 = 12 mm, d2 = 6 mm, and N = 3.

First, we study the optical transmission spectra of
SFS(3) composed of PIMs and NIMs with a mirror sym-
metry. The dependence of a PBG on the incident angle
is shown in Figure 2. It is illustrated that the Bragg gap
shifts upward in frequency for both TE and TM waves
when the incident angle increases. On the contrary, the
zero-n̄ gap is insensitive to incident angle for both TE
and TM polarizations. The edge of zero-n̄ gap only shifts
a little when the incident angle increases.

For comparison, the photonic band gap as a func-
tion of incident angle is plotted in Figure 3, where the
white areas correspond to propagation bands and the
gray areas are the forbidden bands. As shown in Fig-
ure 3, the Bragg gap shifts to high frequency for both
TE and TM waves as the incident angle increases. The
band edges and width of the Bragg gap are greatly affected
by the polarization and the incident angle. For example,
the Bragg gap of the TM wave is closed at an incident
angle about 50◦, whereas the zero-n̄ gap remains nearly
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Fig. 3. The photonic band gap as a function of incident angle.

Fig. 4. Transmittance with different the ratio of the thick-
nesses.

invariant under a various incident angle for both TE and
TM polarizations. Even when incident angle increases to
80◦, the edge of zero-n̄ gap only shifts a little. The insen-
sitivity of the edge to the incident angle and polarization
indicates that there exists an omnidirectional gap coming
from the zero-n̄ gap mechanism. The omnidirectional zero-
n̄ gap possesses some unique properties compared to the
usual omnidirectional Bragg gap. These properties may
provide us aspects for applications, such as omnidirec-
tional reflector with a fixed bandwidth.

In Figure 4, we show the dependence of the gaps on
the ratio of the thicknesses of the two media at normal
incidence. The solid line is the transmittance through the
structure with thickness of d1 = 12 mm, d2 = 6 mm. The
dashed line corresponds to the transmittance through the
same media but the unit cell size is scaled by 3/4. It is
clear from Figure 4 that Bragg gap is affected greatly by

Fig. 5. The variance of band gap with different ratio of two
media. Solid line: d1 = 12 mm, d2 = 6 mm. Dashed line: the
lattice constant is scaled by 2/4. Dotted line: the lattice con-
stant is scaled by 3/4.

Fig. 6. The left panel: the photonic spectra for the first nine
successive levels of Fibonacci photonic structures; the right
panel: numerical values of ε(ω) and µ(ω) given by equation (3).

the change of the ratio of the thicknesses. Conversely, the
zero-n̄ gap remains invariant with the ratio of the thick-
nesses.

In order to understand the dependence of the gaps on
the ratio of the thicknesses of the two media, we inter-
pret the behaviors using the dispersion relation. For the
SFS(3), the dispersion relation is [21]:

cosκ(d1 + d2) = cos(2k1d1) cos(k2d2)

− 1
2

(
η1

η2
+

η2

η1

)
sin(2k1d1) sin(k2d2), (5)

where κ(d1 +d2) is the Bloch phase, the wave impedances
and effective phase shifts in PIMs and NIMs layers are
ηi =

√|µi/εi|, kidi = k
√|εiµi|di (i = 1, 2), respectively;

k is the wave number in vacuum. The variance of band gap
with different ratio of two media is shown in Figure 5. It is
shown that the zero-n̄ gap (0.6–0.9 GHz) hardly changes
with the ratio of the thicknesses. But the Bragg gap will
shift noticeably while the width of the gap will change a
little when the ratio of the thicknesses of the two types of
layers varies.

Now, we turn to study the photonic spectra for the
other successive FS of the quasiperiodic structure, i.e., for
S4 to S12. The photonic spectra is schematically shown in
the left panel of Figure 6, the right panel shows numerical
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values of ε(ω) and µ(ω) given by equation (3), here the
three frequency ranges from low to high: (1) ε < 0,
µ < 0, (2) ε > 0, µ < 0, (3) ε > 0, µ > 0. It is illus-
trated that for each FS there always open two broad gaps
in the considered frequency range beside some minor gaps
in other frequency range. The broad gap at low frequency
(gap1, hereafter) lies in range 1, where ε < 0, µ < 0,
while that at high frequency (gap 2) lies in range 3, where
ε > 0, µ > 0. It has known that the gap1 is a zero-n̄ gap
while gap 2 is a Bragg gap [13,15–17]. From the spectra
for S4 to S12, we note that zero-n̄ gap vary with the se-
quence number at first few levels, but beginning from S8,
the gap begin to become stabilized, with fixed gap posi-
tions and size. The positions and size of the Bragg gap
hardly change, while the frequency about Bragg gap is
split more and more.

4 Conclusion

To conclude, using the transfer matrix method, we have
discussed the photonic spectra of SFS containing positive
and negative refractive index materials. We have shown
that a new type of omnidirectional gaps is found in the
SFS. In contrast to the Bragg gaps, such an omnidirec-
tional gap is insensitive to the incident angles and polar-
ization, and is invariant upon the change of the ratio of the
thicknesses of two media. It is found that zero-n̄ gap exists
in all the SFS, and it is rather stable and independence of
the structure sequence.

This work was supported by the National High Technology
Research and Development Program of China under Grant
No. 2002AA311190, and by the Optoelectronic Unite Science
Research Center of Tianjin (No. 013184011).

References

1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)
2. S. John, Phys. Rev. Lett. 58, 2486 (1987)
3. C.J. Jin, B.Y. Cheng, B.Y. Man, Z.L. Li, D.Z. Zhang,

Phys. Rev. B 61, 10762 (2000)
4. M.E. Zoorob, M.D.B. Charlton, G.J. Parker, J.J.

Baumberg, M.C. Netti, Nature 404, 740 (2000)
5. W. Gellermann, M. Kohmoto, B. Sutherland, P.C. Taylor,

Phys. Rev. Lett. 72, 633 (1994)
6. J.P. Lu, T. Odagaki, J.L. Birman, Phys. Rev. B 33, 4809

(1986)
7. V. Kumar, G. Ananthakrishna, Phys. Rev. Lett. 59, 1476

(1987)
8. J. Li, D. Zhao, Z. Liu, Phys. Lett. A 332, 461 (2004)
9. H. He, W.Y. Zhang, Phys. Lett. A 351, 198 (2006)

10. L. Dal Negro, C.J. Oton, Z. Gaburro, L. Pavesi, P.
Johnson, A. Lagendijk, R. Righini, M. Colocci, D.S.
Wiersma, Phys. Rev. Lett. 90, 055501 (2003)

11. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)
12. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser,

S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)
13. J. Li, L. Zhou, C.T. Chan, P. Sheng, Phys. Rev. Lett. 90,

083901 (2003)
14. A.A. Houck, J.B. Brock, I.L. Chuang, Phys. Rev. Lett. 90,

137401 (2003)
15. L.G. Wang, H. Chen, S.Y. Zhu, Phys. Rev. B 61, 10762

(2000)
16. H.T. Jiang, H. Chen, H.Q. Li, Y.W. Zhang, S.Y. Zhu,

Appl. Phys. Lett. 83, 5386 (2003)
17. H.T. Jiang, H. Chen, H.Q. Li, Y.W. Zhang, J. Zi, S.Y.

Zhu, Phys. Rev. E 69, 066607 (2004)
18. R.A. Shelby, D.R. Smith, S.C. Nemat-Nasser, S. Schultz,

Appl. Phys. Lett. 78, 489 (2001)
19. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77

(2001)
20. J. Pacheco Jr., T.M. Grzegorczyk, B.I. Wu, Y. Zhang, J.A.

Kong, Phys. Rev. Lett. 89, 257401 (2002)
21. D. Lusk, I. Abdulhalim, F. Placido, Opt. Commun. 198,

273 (2001)


